Name:

Date:

Topic:

Class:

Main Ideas/Questions	Notes/Examples
WARM-UP	Directions: Simplify the following polynomials.
	- $(x+1)(x+5)=$ \qquad $=$ \qquad - $(m-4)(m+6)=$ \qquad $=$ \qquad - $(k-7)(k-3)=$ \qquad $=$ \qquad Trinomials like these can be factored back into a product of binomials!
FACTORING TRInOMIALS of the form$a x^{2}+b x+c$	When "a" cannot be factored out by GCF, we can possibly still factor the trinomial. The steps below show a method called "X Factor Deluxe".
	Step 1: Fill in X-Factor Deluxe setup with ax, ac and b
	Step 2: Identify factors that multiply to equal ac that also add together to equal b
	Step 3: Place the factors in your t-chart. Simply both sides of the tchart as fractions.
	Step 4: Enter your 2 simplified factors into 2 sets of parentheses. (Tip: use FOIL to confirm that your binomials produce the original equation)
	Example: $\begin{aligned} & a x^{2}+b x+d \\ & 1 x^{2}+7 x+12 \end{aligned}$ ax ax Step 1: Step 2: Step 3: Step 4: $(x+3)(x+4)$

Name: \qquad Unit 7: Polynomials \& Factoring
Bell: \qquad Homework 7: Factoring Trinomials $\left(x^{2}+b x+c\right)$

Directions: Factor each polynomial. Check your answers by FOIL.		
1. $x^{2}+5 x+6$	2. $a^{2}+11 a+30$	3. $m^{2}+18 m+56$
4. $w^{2}+4 w+4$	5. $y^{2}+9 y+8$	6. $k^{2}+17 k+66$
7. $y^{2}-6 y+8$	8. $x^{2}-11 x+28$	9. $n^{2}-n-90$
10. $p^{2}-14 p+40$		11. $x^{2}+3 x-70$
13. $m^{2}+5 m-6$		12. $w^{2}-12 w+36$
16. $a^{2}+11 a+18$	14. $b^{2}-15 b+56$	15. $x^{2}-10 x-39$

Directions: Factor each polynomial. Look for a GCF first.		
19. $2 k^{2}-8 k-90$	20. $x^{3}+2 x^{2}-48 x$	21. $4 w^{2}-52 w-120$
22. $2 x^{2}+10 x+8$	23. $3 y^{2}+24 y+48$	24. $5 m^{3}+30 m^{2}-35 m$
Arbor View HS 2019-20		

